3.1.10 \(\int (a+b \csc ^2(c+d x))^{3/2} \, dx\) [10]

3.1.10.1 Optimal result
3.1.10.2 Mathematica [A] (verified)
3.1.10.3 Rubi [A] (verified)
3.1.10.4 Maple [B] (warning: unable to verify)
3.1.10.5 Fricas [B] (verification not implemented)
3.1.10.6 Sympy [F]
3.1.10.7 Maxima [F]
3.1.10.8 Giac [F(-2)]
3.1.10.9 Mupad [F(-1)]

3.1.10.1 Optimal result

Integrand size = 16, antiderivative size = 119 \[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=-\frac {a^{3/2} \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {a+b+b \cot ^2(c+d x)}}\right )}{d}-\frac {\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b+b \cot ^2(c+d x)}}\right )}{2 d}-\frac {b \cot (c+d x) \sqrt {a+b+b \cot ^2(c+d x)}}{2 d} \]

output
-a^(3/2)*arctan(cot(d*x+c)*a^(1/2)/(a+b+b*cot(d*x+c)^2)^(1/2))/d-1/2*(3*a+ 
b)*arctanh(cot(d*x+c)*b^(1/2)/(a+b+b*cot(d*x+c)^2)^(1/2))*b^(1/2)/d-1/2*b* 
cot(d*x+c)*(a+b+b*cot(d*x+c)^2)^(1/2)/d
 
3.1.10.2 Mathematica [A] (verified)

Time = 1.21 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.75 \[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=\frac {b \left (a+b \csc ^2(c+d x)\right )^{3/2} \left (\sqrt {2} b (3 a+b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {-b} \cos (c+d x)}{\sqrt {-a-2 b+a \cos (2 (c+d x))}}\right )+\sqrt {-b} \left (-b \sqrt {-a-2 b+a \cos (2 (c+d x))} \cot (c+d x) \csc (c+d x)+2 \sqrt {2} a^{3/2} \log \left (\sqrt {2} \sqrt {a} \cos (c+d x)+\sqrt {-a-2 b+a \cos (2 (c+d x))}\right )\right )\right ) \sin ^3(c+d x)}{(-b)^{3/2} d (-a-2 b+a \cos (2 (c+d x)))^{3/2}} \]

input
Integrate[(a + b*Csc[c + d*x]^2)^(3/2),x]
 
output
(b*(a + b*Csc[c + d*x]^2)^(3/2)*(Sqrt[2]*b*(3*a + b)*ArcTanh[(Sqrt[2]*Sqrt 
[-b]*Cos[c + d*x])/Sqrt[-a - 2*b + a*Cos[2*(c + d*x)]]] + Sqrt[-b]*(-(b*Sq 
rt[-a - 2*b + a*Cos[2*(c + d*x)]]*Cot[c + d*x]*Csc[c + d*x]) + 2*Sqrt[2]*a 
^(3/2)*Log[Sqrt[2]*Sqrt[a]*Cos[c + d*x] + Sqrt[-a - 2*b + a*Cos[2*(c + d*x 
)]]]))*Sin[c + d*x]^3)/((-b)^(3/2)*d*(-a - 2*b + a*Cos[2*(c + d*x)])^(3/2) 
)
 
3.1.10.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3042, 4616, 318, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a+b \sec \left (c+d x+\frac {\pi }{2}\right )^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4616

\(\displaystyle -\frac {\int \frac {\left (b \cot ^2(c+d x)+a+b\right )^{3/2}}{\cot ^2(c+d x)+1}d\cot (c+d x)}{d}\)

\(\Big \downarrow \) 318

\(\displaystyle -\frac {\frac {1}{2} \int \frac {b (3 a+b) \cot ^2(c+d x)+(a+b) (2 a+b)}{\left (\cot ^2(c+d x)+1\right ) \sqrt {b \cot ^2(c+d x)+a+b}}d\cot (c+d x)+\frac {1}{2} b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)+b}}{d}\)

\(\Big \downarrow \) 398

\(\displaystyle -\frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\left (\cot ^2(c+d x)+1\right ) \sqrt {b \cot ^2(c+d x)+a+b}}d\cot (c+d x)+b (3 a+b) \int \frac {1}{\sqrt {b \cot ^2(c+d x)+a+b}}d\cot (c+d x)\right )+\frac {1}{2} b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)+b}}{d}\)

\(\Big \downarrow \) 224

\(\displaystyle -\frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\left (\cot ^2(c+d x)+1\right ) \sqrt {b \cot ^2(c+d x)+a+b}}d\cot (c+d x)+b (3 a+b) \int \frac {1}{1-\frac {b \cot ^2(c+d x)}{b \cot ^2(c+d x)+a+b}}d\frac {\cot (c+d x)}{\sqrt {b \cot ^2(c+d x)+a+b}}\right )+\frac {1}{2} b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)+b}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\left (\cot ^2(c+d x)+1\right ) \sqrt {b \cot ^2(c+d x)+a+b}}d\cot (c+d x)+\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)+b}}\right )\right )+\frac {1}{2} b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)+b}}{d}\)

\(\Big \downarrow \) 291

\(\displaystyle -\frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\frac {a \cot ^2(c+d x)}{b \cot ^2(c+d x)+a+b}+1}d\frac {\cot (c+d x)}{\sqrt {b \cot ^2(c+d x)+a+b}}+\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)+b}}\right )\right )+\frac {1}{2} b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)+b}}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\frac {1}{2} \left (2 a^{3/2} \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)+b}}\right )+\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a+b \cot ^2(c+d x)+b}}\right )\right )+\frac {1}{2} b \cot (c+d x) \sqrt {a+b \cot ^2(c+d x)+b}}{d}\)

input
Int[(a + b*Csc[c + d*x]^2)^(3/2),x]
 
output
-(((2*a^(3/2)*ArcTan[(Sqrt[a]*Cot[c + d*x])/Sqrt[a + b + b*Cot[c + d*x]^2] 
] + Sqrt[b]*(3*a + b)*ArcTanh[(Sqrt[b]*Cot[c + d*x])/Sqrt[a + b + b*Cot[c 
+ d*x]^2]])/2 + (b*Cot[c + d*x]*Sqrt[a + b + b*Cot[c + d*x]^2])/2)/d)
 

3.1.10.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 318
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[d*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(b*(2*(p + q) + 1))), x] + S 
imp[1/(b*(2*(p + q) + 1))   Int[(a + b*x^2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b 
*c*(2*(p + q) + 1) - a*d) + d*(b*c*(2*(p + 2*q - 1) + 1) - a*d*(2*(q - 1) + 
 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && G 
tQ[q, 1] && NeQ[2*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntBinomialQ[a, b, c, 
d, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4616
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + b + b*ff^2*x^2)^p 
/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
&& NeQ[a + b, 0] && NeQ[p, -1]
 
3.1.10.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1132\) vs. \(2(101)=202\).

Time = 2.51 (sec) , antiderivative size = 1133, normalized size of antiderivative = 9.52

method result size
default \(\text {Expression too large to display}\) \(1133\)

input
int((a+b*csc(d*x+c)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/16/d*csc(d*x+c)*(1/(1-cos(d*x+c))^2*(csc(d*x+c)^2*b*(1-cos(d*x+c))^4+4*a 
*(1-cos(d*x+c))^2+2*b*(1-cos(d*x+c))^2+b*sin(d*x+c)^2))^(3/2)*(1-cos(d*x+c 
))*(2*csc(d*x+c)^2*b^(3/2)*ln((b*(1-cos(d*x+c))^2*csc(d*x+c)^2+b^(1/2)*(b* 
(1-cos(d*x+c))^4*csc(d*x+c)^4+4*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*b*(1-cos 
(d*x+c))^2*csc(d*x+c)^2+b)^(1/2)+2*a+b)/b^(1/2))*(1-cos(d*x+c))^2*(-a)^(1/ 
2)-2*csc(d*x+c)^2*b^(3/2)*ln(2/(1-cos(d*x+c))^2*(2*a*(1-cos(d*x+c))^2+b*(1 
-cos(d*x+c))^2+sin(d*x+c)^2*b^(1/2)*(b*(1-cos(d*x+c))^4*csc(d*x+c)^4+4*a*( 
1-cos(d*x+c))^2*csc(d*x+c)^2+2*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+b)^(1/2)+b* 
sin(d*x+c)^2))*(1-cos(d*x+c))^2*(-a)^(1/2)+6*csc(d*x+c)^2*a*b^(1/2)*ln((b* 
(1-cos(d*x+c))^2*csc(d*x+c)^2+b^(1/2)*(b*(1-cos(d*x+c))^4*csc(d*x+c)^4+4*a 
*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+b)^(1/2)+ 
2*a+b)/b^(1/2))*(1-cos(d*x+c))^2*(-a)^(1/2)-6*csc(d*x+c)^2*b^(1/2)*ln(2/(1 
-cos(d*x+c))^2*(2*a*(1-cos(d*x+c))^2+b*(1-cos(d*x+c))^2+sin(d*x+c)^2*b^(1/ 
2)*(b*(1-cos(d*x+c))^4*csc(d*x+c)^4+4*a*(1-cos(d*x+c))^2*csc(d*x+c)^2+2*b* 
(1-cos(d*x+c))^2*csc(d*x+c)^2+b)^(1/2)+b*sin(d*x+c)^2))*a*(1-cos(d*x+c))^2 
*(-a)^(1/2)+csc(d*x+c)^2*b*(b*(1-cos(d*x+c))^4*csc(d*x+c)^4+4*a*(1-cos(d*x 
+c))^2*csc(d*x+c)^2+2*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+b)^(1/2)*(1-cos(d*x+ 
c))^2*(-a)^(1/2)-8*csc(d*x+c)^2*a^2*ln(4*(a*(1-cos(d*x+c))^2*csc(d*x+c)^2+ 
(-a)^(1/2)*(b*(1-cos(d*x+c))^4*csc(d*x+c)^4+4*a*(1-cos(d*x+c))^2*csc(d*x+c 
)^2+2*b*(1-cos(d*x+c))^2*csc(d*x+c)^2+b)^(1/2)-a)/((1-cos(d*x+c))^2*csc...
 
3.1.10.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 321 vs. \(2 (101) = 202\).

Time = 0.55 (sec) , antiderivative size = 1607, normalized size of antiderivative = 13.50 \[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate((a+b*csc(d*x+c)^2)^(3/2),x, algorithm="fricas")
 
output
[1/8*(sqrt(-a)*a*log(128*a^4*cos(d*x + c)^8 - 256*(a^4 + a^3*b)*cos(d*x + 
c)^6 + 160*(a^4 + 2*a^3*b + a^2*b^2)*cos(d*x + c)^4 + a^4 + 4*a^3*b + 6*a^ 
2*b^2 + 4*a*b^3 + b^4 - 32*(a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*cos(d*x + c 
)^2 - 8*(16*a^3*cos(d*x + c)^7 - 24*(a^3 + a^2*b)*cos(d*x + c)^5 + 10*(a^3 
 + 2*a^2*b + a*b^2)*cos(d*x + c)^3 - (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cos(d 
*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c)^2 - a - b)/(cos(d*x + c)^2 - 1))*si 
n(d*x + c))*sin(d*x + c) + (3*a + b)*sqrt(b)*log(2*((a^2 - 6*a*b + b^2)*co 
s(d*x + c)^4 - 2*(a^2 - 2*a*b - 3*b^2)*cos(d*x + c)^2 + 4*((a - b)*cos(d*x 
 + c)^3 - (a + b)*cos(d*x + c))*sqrt(b)*sqrt((a*cos(d*x + c)^2 - a - b)/(c 
os(d*x + c)^2 - 1))*sin(d*x + c) + a^2 + 2*a*b + b^2)/(cos(d*x + c)^4 - 2* 
cos(d*x + c)^2 + 1))*sin(d*x + c) - 4*b*sqrt((a*cos(d*x + c)^2 - a - b)/(c 
os(d*x + c)^2 - 1))*cos(d*x + c))/(d*sin(d*x + c)), -1/8*(2*(3*a + b)*sqrt 
(-b)*arctan(-1/2*((a - b)*cos(d*x + c)^2 - a - b)*sqrt(-b)*sqrt((a*cos(d*x 
 + c)^2 - a - b)/(cos(d*x + c)^2 - 1))*sin(d*x + c)/(a*b*cos(d*x + c)^3 - 
(a*b + b^2)*cos(d*x + c)))*sin(d*x + c) - sqrt(-a)*a*log(128*a^4*cos(d*x + 
 c)^8 - 256*(a^4 + a^3*b)*cos(d*x + c)^6 + 160*(a^4 + 2*a^3*b + a^2*b^2)*c 
os(d*x + c)^4 + a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4 - 32*(a^4 + 3*a^ 
3*b + 3*a^2*b^2 + a*b^3)*cos(d*x + c)^2 - 8*(16*a^3*cos(d*x + c)^7 - 24*(a 
^3 + a^2*b)*cos(d*x + c)^5 + 10*(a^3 + 2*a^2*b + a*b^2)*cos(d*x + c)^3 - ( 
a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x +...
 
3.1.10.6 Sympy [F]

\[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=\int \left (a + b \csc ^{2}{\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx \]

input
integrate((a+b*csc(d*x+c)**2)**(3/2),x)
 
output
Integral((a + b*csc(c + d*x)**2)**(3/2), x)
 
3.1.10.7 Maxima [F]

\[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=\int { {\left (b \csc \left (d x + c\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+b*csc(d*x+c)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*csc(d*x + c)^2 + a)^(3/2), x)
 
3.1.10.8 Giac [F(-2)]

Exception generated. \[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+b*csc(d*x+c)^2)^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.1.10.9 Mupad [F(-1)]

Timed out. \[ \int \left (a+b \csc ^2(c+d x)\right )^{3/2} \, dx=\int {\left (a+\frac {b}{{\sin \left (c+d\,x\right )}^2}\right )}^{3/2} \,d x \]

input
int((a + b/sin(c + d*x)^2)^(3/2),x)
 
output
int((a + b/sin(c + d*x)^2)^(3/2), x)